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ABSTRACT
As high-dimensional queries in online systems gain importance with the

widespread adoption of Machine Learning and Neural Networks, high-dimensional

databases have emerged as a significant research topic. Tasked with processing vast

amounts of data (both vector and scalar) in various contexts and conducting searches in

high-dimensional metrics and scalar columns, contemporary DBMS face two primary

challenges: 1. Treating vector indices as a black box without unlocking their optimiza-

tion potential, and 2. Lacking a feasible query planning mechanism for complex vector

queries. This situation conflicts with the online nature of these applications.

Building on the novel work of VBase, which deploys an iterative abstraction on

vector indices to overcome the black-box limitation, this paper presents a unified cost

abstraction for high-dimensional indices. We demonstrate that this model effectively

captures various types of queries and seamlessly integrates into relational databases.

As a result, high-dimensional databases can execute queries using the optimal plan,

yielding superior performance (multiple times) compared to basic strategies.
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Chapter 1 Introduction

Driven by the feature extraction [1] capabilities of deep learning models and ma-

chine learning techniques, recent years have seen significant progress in large-scale

applications of high-dimensional data queries. These include recommendation sys-

tems [2] (identifying users with shared interests), image processing (classification [3-5]

and deduplication [6] ), search [7] , and more. High-dimensional queries [8] involve find-

ing nearest neighbors in high-dimensional spaces. Given the prohibitive cost of ex-

act search, researchers have developed Approximate High-dimensional Nearest Neigh-

bor Search(ANNS) [9] techniques that balance search accuracy with efficiency. Tradi-

tional applications have focused on two basic query types for ANNS: top-k and range

search, which have been comprehensively investigated [10-12] in recent decades. How-

ever, emerging applications such as e-commerce [13-14] demand more diverse query

types. For instance, consider the example in AnalyticDB-V [15] , an online shopper seek-

ing a dress similar to one worn by a celebrity (vector search over style embedding) for un-

der 100$ (scalar search on the price column). Efficiently executing these mixed queries

is a pressing research challenge.

Previous attempts to address this problem involved integrating high-dimensional

indices with traditional relational database management systems (DBMS). However,

these approaches treated the vector search engine as a black box, executing vector

and scalar searches separately [16] before merging the results. VBase [17] success-

fully bridged separate search paths by leveraging the relaxed monotonicity in high-

dimensional indices, permitting iterative result retrieval akin to scalar indices within the

volcano model [18] . Unlocking vector indices leads to both opportunities and challenges

for optimization. Revisiting the online shopping example, two potential execution paths

exist for the query in the iterative model: 1) scanning high-dimensional indices first and

then applying a price filter on the results; or 2) scanning the B-Tree index on price and

filtering out the nearest goods by range filter. Accurate cost prediction is crucial for

guiding the executor toward the optimal path.

Query planning [19] is a crucial optimization subsystem in traditional DBMS, re-

sponsible for estimating [20] the costs of various execution plans beforehand and guiding
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the DBMS to select the optimal plan. For instance, inner joins across multiple tables

can be optimized by altering the order to reduce intermediate results. In the case of

”mixed” queries (combining vector and scalar filters) like the online shopping example,

optimization can be achieved by applying the stricter filter first. However, accurate es-

timation of vector search costs is pivotal for this purpose. Prior to VBase, vector search

was an independent component of DBMS, and query planning was not required, re-

sulting in only a few [21-22] early studies on cost modeling for high-dimensional indices.

Therefore, this paper represents a pioneering attempt to model the costs of contemporary

high-dimensional indices.

The challenge of accurately estimating costs for high-dimensional indices arises

from the selectivity estimation of queries and the complex mechanisms employed by

various indices to reduce amount of computation. VBase [17] introduced a simple cost

prediction model for vector search and range filtering, enabling DBMS search engines to

choose better plans. However, the cost model offered in VBase only applies to specific

indices.

As a complementary extension to VBase, this paper underscores the discovery of

shared search patterns common to high-dimensional indices: optimization techniques

for high-dimensional searching can be categorized into quantization and navigation.

Building on this insight, we generalize the cost model in VBase [17] by proposing a

universal cost abstraction for high-dimensional indices. We evaluate the unified cost

abstraction by implementing an actual cost estimation subsystem in PostgreSQL. Our

system demonstrates satisfactory accuracy in mixed query cost prediction and a signif-

icant advantage (depending on the query) over default planning.

4



中国科学技术大学本科毕业论文

Chapter 2 Background

2.1 Emerging Online Vector Queries

The accelerated development of machine learning and neural networks has led to

the widespread use of high-dimensional embeddings in various fields such as recom-

mendation systems [2,23] , e-commerce [13-14] , and search [7] . These online applications

necessitate fast querying of vector data. The exact search cost proves infeasible for these

online scenarios, leading to the emergence of many ANNS [24-27] techniques. These in-

dices balance speed and accuracy by relaxing recall requirements in traditional query

types like kNN [28-29] and Range Query. However, new applications [16] have proposed

the need for new query types, such as high-dimensional table join, mixed query (with

both scalar and vector filters), and multi-column topK query. These demands have

spurred researchers to develop more powerful query engines, with one promising ap-

proach being the integration of vector indices into relational DBMSs.

2.2 Combining Relational Database and Vector Indices

Recent developments have seen the establishment of DBMSs [15-16,30] and search

engines [31] supporting hybrid and complex vector queries. However, these systems ei-

ther treat vector indices as a black box, with mixed-filter queries processed separately

by vector and scalar indices [16] , or perform batch scanning with default planning [30] .

VBase [17] identified the relaxed monotonicity in vector indices, opening the ”black box”

and integrating it into the volcano model [18] (iterative model). This innovative approach

make query planning for high-dimensional operations possible and feasible.

SELECT count ( ∗ ) FROM goods

WHERE d i s t ( embedding , query_embedding ) < 10

AND p r i c e < 50 ;
Listing 2.1 <−> refers to L2 distance, q is the embedding of the query vector,
rand_id is a randomly generated numeric column.

For instance, determining the best execution path for the mixed query before actual

execution can greatly enhance performance.
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Figure 2.1 Two possible planning of query. Different planning may result in
significantly differed execution time, for instance there is only a few matches for
goods cheaper than 50$, scanning B-Tree first would be considerably faster.

2.3 Query Optimization in Relational DBMS

Query optimization is a crucial component of relational DBMSs, comprising three

parts: cardinality estimation (CE), cost model (CM), and plan enumeration (PE) [32] .

CM utilizes estimation data from CE and applies it to plans generated by PE. By esti-

mating costs for different plans, the DBMS can determine the optimal execution path

for a query. The cost model itself is a well-researched area in relational databases,

encompassing logical and physical aspects [33] , considering data processing properties

(independent of deployment layout) and hardware specification impacts respectively.

With the widespread adoption of NVME solid-state drives today, the additional cost of

random disk page fetches over sequential page fetches has been eliminated [34] , and the

bottleneck for high-dimensional data distance search now lies in CPU operations. Con-

sequently, we can focus on logical costs as differences in physical costs are diminished.

In relational DBMS, numerous optimizations [35] rely on the strict commu-

tative property of operators, such as Inner Join. This property allows changes

in execution order, enabling the selection of the optimal order. For exam-

ple, TABLE A INNER JOIN TABLE B INNER JOIN TABLE C can be executed as

TABLE A INNER JOIN (TABLE B INNER JOIN TABLE C). If table C is signifi-

cantly smaller, the latter execution order can yield substantial performance gains by

reducing the number of tuples scanned. DBMS typically predicts the optimal execution

order using optimization subsystems before execution. As the mixed selection query

defined in VBase [17] adheres to the relaxed commutative property, it can be optimized

through cost estimation and plan enumeration. This provides opportunities for planning
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optimization, underscoring the need for a precise cost model for ANNS.

𝜃𝐹 1(𝜃𝐹 2(𝐴)) = 𝜃𝐹 2(𝜃𝐹 1(𝐴))

𝐹 1 and 𝐹 2 here can be any filter, including range-based filter

2.4 Shared Concepts in Vector Search

VBase [17] identifies common search behaviors in ANNS. The shared search pattern

originates from shared concepts in optimizing vector search. Current efforts to acceler-

ate vector queries while preserving high accuracy can be broadly categorized into two

tracks: Navigation and Quantization. This abstraction combines the ideas of dimension-

ality reduction and subspace clustering in high-dimensional cluster techniques [36] , but

it applies most ANNS approaches, as summerized in Chapter6. This section identifies

and elucidates the two categories of concepts in vector search optimization.

（1）Navigation

Navigation focuses on minimizing the number of visited vectors in metric space

to gather required results. The implementation of this concept varies across query

types and ANNS, with nearly all employing it to some extent. Examples include clus-

tering [37] , NSG-based indices, hierarchical LSH [38] , and tree-like indices such as R-

Tree [27,39] , RD-Tree [40] , and KD-Tree [24] . For instance, kNN queries on HNSW [25]

indices reduce the number of visited vectors by iterating through several layers of Navi-

gable Small-World graphs(NSGs) to rapidly navigate near the target points in proximity

to the query vector. When queries impose additional constraints, such as scalar filters,

an effective navigation strategy should reduce the number of visited vectors before iden-

tifying and returning those that meet all criteria. Such as Milvus’ partitioning on scalar

columns [16] or altering the search order [17] .

（2）Quantization

Quantization [41] refers to the process of reducing the dimensionality of the search

space and, consequently, the cost of distance calculation. Widely adopted implementa-

tions include reducing the length of float point representation, Random Projection [42] ,

Principal Component Analysis [43-44] , and Product Quantization [45] . These methods ei-

ther trade accuracy for speed, as in the case of reducing representation bits, or attempt
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to extract and summarize distribution features in a compact fashion.

Upon discovering and identifying the shared concepts in ANNS, we propose a cor-

responding two-level cost abstraction to summarize ANNS built on these ideas.
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Chapter 3 Two-Layer Cost Abstraction Design

In this section, we introduce a two-level cost abstraction consisting of naviga-

tion cost and traversal cost. Drawing on shared concepts and behaviors in vector

search, this cost abstraction applies to most contemporary ANNs, including KDTree [24] ,

HNSW [25] , NSW [46] , IVFPQ [47] and etc. Within this abstraction framework, we

present two example cost models for two popular indices (IVFFlat and HNSW). These

models are simple yet capable of providing accurate cost estimations at runtime.

3.1 Shared Search Pattern in ANNs

As all indices utilize the navigation concept defined in Section 2.4 to some extent

to reduce the number of unrelated vectors fetched, there is a trend [17] in the distance

of iterated vectors that includes two phases. In Figure 3.1, during phase 1, traversal

approaches the target vector approximately, while in phase 2, traversal gradually moves

away from the target vector in an approximately monotonic order.

To identify the pivot (or turning point) in search patterns, we can use a simplified

definition from VBase [17] . 𝑀𝑠
𝑞 defines the median distance in the 2𝑤+1-sized traversal

window (we utilize the median to account for varying ”speeds” in distance changes

between the two phases).

𝑀𝑠
𝑞 = Median(Dist(𝑞, 𝑣𝑖)|𝑖 ∈ [𝑠 − 𝑤, 𝑠 + 𝑤]) (3.1)

The pivot in traversal distance can be defined as follows:

∃𝑁, 𝑀𝑁
𝑞 ≤ 𝑀𝑛

𝑞 , ∀𝑛 (3.2)

With the pivot defined in Equation 3.2, we can propose a two-layer cost model

reflecting the search phases divided by it. This model accounts for the distinct charac-

teristics of each phase in the search pattern.
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Figure 3.1 Trend in HNSW and IVFFlat search. The pivot in HNSW is de-
tected with Equation 3.2. In IVFFlat, the first phase involves distance calcula-
tions between cluster centroids and the query vector. The pivot occurs when
the nearest centroid is found, and the iterator begins searching within the corre-
sponding cluster.

3.2 Cardinality Estimation of Range Filter

To model traversal cost in the second phase, we need to predict the number of tuples

the iterator scans through. Cardinality (or selectivity) of the filter refers to the ratio of

unique values that pass the filter condition to the total number of tuples in the table. It

can help to estimate the number of iterator search steps and ultimately the cost in the

second phase. As a kNN query typically returns 𝑘 results in most cases (with cardinality

being 𝑘/𝑁 , where 𝑁 is the table size), we use range queries coupled with an additional

scalar filter to demonstrate this aspect.

SELECT ∗

FROM s i f t 1 m

WHERE embedding <−> q < r

AND r a n d _ i d < p ;
Listing 3.1 <−> refers to L2 distance, q is the embedding of the query vector,
rand_id is a randomly generated numeric column.
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There is a lot of work [48-51] focus on estimating the cardinality of the range filter.

This cost abstraction is open to any of them, as it accepts cardinality as one of its inputs.

3.3 Two Layer Cost model

With the pivot defined in Section 3.1, we can establish a unified two-level abstrac-

tion corresponding to the two phases in vector traversal. Interestingly, this two-level

abstraction is also present [20] in traditional scalar indices like B-Tree [52] , which simpli-

fies the implementation in Section 4.2. We name the costs before and after the pivot as

Start Up Cost and Iteration Cost, respectively. 𝐶start refers to the interval between the

open() and next () operations in the Volcano model [18] , while 𝐶iter denotes the interval

between next () calls, or the minimum time taken to prepare the next tuple.

𝐶 = 𝐶start + 𝐶iter (3.3)

Before proceeding, we should also define the cost of the operator <−>. This op-

erator calculates the L2 distance between two vectors. In modern processors, with the

optimization of vector operations using SIMD, the cost can be defined as:

𝐶dist = 𝑐 × dim (3.4)

𝑐 is a coefficient dependent on the environment (including ISA implementation and

pre-defined cost in DBMS). This equation effectively captures the cost of calculating the

L2 distance between two vectors within the given context.

3.3.1 Start Up cost

This cost is analogous to the cost with the same name in relational databases. For

example, in the B-Tree index, this cost represents the process of navigating down the

tree. In high-dimensional indices, it captures the cost of the initial search phase, i.e.,

navigation. The cost is proportional to the number of nodes (𝑁start) scanned.

𝐶start = 𝑁start × 𝐶dist (3.5)

For instance, consider HNSW as an example; the start-up cost describes the steps

for iterating down higher levels, from the entry point to the query’s nearest neigh-
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bor. Given that the expected number of search steps is Θ(log 𝑁) [25] , we can define

the HNSW-specific Start-Up Cost:

𝐶start,hnsw = 𝑅start × log 𝑁 (3.6)

𝑅start is a coefficient related to hyper-parameters (efConstruction, 𝑀𝐿, 𝑀) used

when creating index, it can be a priori calculated from hyper-parameters or obtained

through empirical statistics in DBMS’s analyze routine. 𝑁 is the number of nodes in

the search space.

For IVFFlat and IVFPQ, the Start-Up Cost reflects the process of calculating the

distance between query and cluster centroids and then sorting out the nearest clusters

using Inverted Index. 𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟 is the number of clusters when training index.

𝐶start,IVF = 𝑁cluster × 𝐶dist (3.7)

3.3.2 Iteration Cost

In relational databases, this cost reflects the cost of applying the filter to tuples in

the area located during the initial phase. Assuming accurate navigation, the cost scales

linearly with cardinality multiplied by the table size.

From 3.1, we observe that HNSW aligns well with this expectation, as it navigates

down to the nearest point first. Here, we can safely simplify the estimation by assuming

the recall of HNSW is equal to 1 [25] .

𝐶iter,hnsw = 𝑅scan × 𝑆(𝑞) × 𝑁 × 𝐶dist (3.8)

𝑆(𝑞) is the selectivity of query 𝑞. 𝑅scan is a coefficient reflecting the average num-

ber of distance function calls per scan. It is heavily influenced by hyper-parameters 𝑀 ,

efConstruction, and the distribution of vectors. This coefficient can also be obtained

empirically.

IVF indices do not exhibit a clear trend in 3.1. However, their scanning behavior

can be easily modeled. After the 𝑁query closest clusters are located, all vectors within

these clusters are scanned and filtered. Thus, the iteration cost can be modeled as:

12
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𝐶iter,ivf = 𝑁query × 𝑁vec,cluster × 𝐶dist

= 𝑁query/𝑁cluster × 𝑁 × 𝐶dist

(3.9)

𝑁vec,cluster is the average number of vectors per cluster. 𝑁query is the number of

clusters scanned, which is a runtime parameter in the FAISS implementation [47] .

By defining the start-up cost and iteration cost as described above, we can effec-

tively utilize this abstraction to model the complete ANNS scan process before exe-

cution, and finally enable more informed and optimized decision-making in DBMS’

planning stage.

13
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Chapter 4 Implementation

In this section, we implement an actual cost model based on the proposed abstrac-

tion in PostgreSQL. The cost model is utilized in the optimization (query planning)

subsystem, where the SQL has already been parsed into an execution tree but the ex-

ecution plans have not yet been generated. DBMS relies on the cost model to select

better plans to feed into the executor. An effective cost model can help reduce execu-

tion costs in this process. We evaluate our cost model by collecting actual execution

times in Section 5.3.

4.1 Cost Model Implementation

4.1.1 Cardinality Estimation

Though various studies [48-51] have focused on improving the cardinality estima-

tion of high-dimensional queries, our implementation employs uniform sampling as the

cardinality estimator due to its simplicity, suitability for cost model demonstration, and

reliable prediction performance as indicated in Section 5.2. Our abstraction is flexible

and can readily incorporate cardinality estimation results from these studies as input,

which allows for potential enhancements in cost model accuracy and adaptability to

various high-dimensional query scenarios.

The selectivity is evaluated using Equation 4.1, where 𝑆exec represents the actual

selectivity of the range filter, and 𝑆esti denotes the selectivity determined by applying

the range filter to a sample set.

𝑆exec ≈ 𝑆esti (4.1)

4.1.2 Parameter Collection

𝑅𝑠𝑡𝑎𝑟𝑡 is empirically determined in the HNSW start-up cost by collecting the num-

ber of distance calculations during the search. This process can be integrated and auto-

mated with Analyze in the DBMS.

As illustrated in Figure 4.1, the ratio of distance call times to iteration steps re-
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Figure 4.1 The scatter graph of distance function call times to iteration steps.
Dashed lines denotes different ratio.

mains stable during the search. The distribution is not perfectly parallel to the dashed

lines because, when the iterator scans further from the query, the ratio of visited vectors

in the current node’s hypersphere neighborhood decreases, resulting in more distance

calculations. However, this effect has limited impact and can be safely ignored. For

other indices, such as IVFFlat and IVFPQ, the scanning pattern is fixed, as clusters are

always wholly scanned. In LSH, the calculation time of the hashing process is more

predictable due to the use of fixed mapping algorithms.

Another cost parameter, 𝐶dist, is proportional to the pre-defined cost constant in

PostgreSQL and is addressed in Section 4.2.3.

4.2 Integration in PostgreSQL

4.2.1 Index Cost Estimation

PostgreSQL provides a set of APIs for index registration and processing, including

query optimization and plan enumeration. The implementation of the cost model can

focus on the amcostestimate API [20] .

a m c o s t e s t i m a t e ( P l a n n e r I n f o ∗ roo t ,

I ndexPa t h ∗ pa th ,

double l oop_coun t ,

15
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Cost ∗ i n d e x S t a r t u p C o s t ,

Cos t ∗ i n d exTo t a lCo s t ,

S e l e c t i v i t y ∗ i n d e x S e l e c t i v i t y ,

double ∗ i n d e x C o r r e l a t i o n ,

double ∗ indexPage s ) ;

Listing 4.1 PostgreSQL’s index cost estimation API

The three parameters at the beginning provide the necessary context information.

Since index scanning is a node in the execution tree, this information includes the loop

count of its upper level, the considered index access path (with cost and selectivity

awaiting calculation), and planning tree information. The other parameters are out-

puts of the cost model, providing the necessary runtime stats to PostgreSQL’s back-

end. indexStartupCost represents the interval between open and next in the volcano

model, or the time before the first result is ready. This cost corresponds to the navi-

gation phase in the index scan. indexTotalCost is the sum of indexStartupCost and

index iteration cost, with the latter corresponding to the traversal phase in the Abstrac-

tion. indexSelectivity is the estimated cardinality of the filter applied to the index. For

range-based queries, it is the ratio of vectors within the hypersphere with a radius of r;

for kNN queries, it is the ratio of k to the number of vectors. indexCorrelation can be set

to zero, as the cache effect is weak for high-dimensional tuples and NVMe [34] devices.

indexPages can be inferred from the filter selectivity. Our cost model implementation

follows Equation 4.2.

indexStartupCost = 𝐶start

indexTotalCost = 𝐶start + 𝐶iter

indexSelectivity = 𝑆esti

indexCorrelation = 0

(4.2)

indexPages is automatically estimated by PostgreSQL (there is a general cost esti-

mation function genericcostestimate ), with selectivity estimation provided by uniform

sampling in 4.1.1.
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Flame Graph of HNSW index search in PostgreSQL
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Figure 4.2 Flamegraph [56] of HNSW index search in PostgreSQL. Notice IO
operations consume most of the CPU time. The coefficient constant values are
set based on the execution time ratio of IO and CPU operations.

4.2.2 Distance Function Cost

PostgreSQL also provides API [53] for the distance function cost estimation. This

general API is intended for function-related support, including selectivity estimation

(for boolean functions, which are not relevant here), cost estimation, and more.

s u p p o r t _ f u n c t i o n (PG_FUNCTION_ARGS)

PG_FUNCTION_ARGS provides hints for support request types. Our implemen-

tation returns null for all requests except cost estimation. During cost estimation, the

function arguments are provided. These may be a constant, an intermediate result not yet

available, or a column. The length of the input vector is extracted here and scaled with

a hardware-dependent constant 𝑐 from Equation 3.4distance function cost, collected in

Section 4.2.3.

4.2.3 PostgreSQL Fine-tuning

PostgreSQL has a few pre-defined cost constants originating from years ago, and it

is recommended [54] to adjust them according to specific hardware configurations. For

instance, seq_page_cost and random_page_cost should be equal [34] for data clusters on

NVMe [34] SSD devices. Additionally, the ratio of seq_page_cost to cpu_operator_cost

should be modified to account for the current state of modern CPUs. In practice, the

values of seq_page_cost and cpu_operator_cost are adjusted according to profiling re-

sults [55] .

Considering these constants, the cost of distance function calls, 𝐶dist, can be de-

termined by profiling vector search. All cost model parameters are available during the

planning stage, and the model’s output will guide PostgreSQL’s execution plan selec-

tion.
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Chapter 5 Evaluation

Despite a few early works [21-22] proposing cost models for high-dimensional in-

dices like R-Tree, state-of-the-art high-dimensional databases do not employ cost eval-

uation for high-dimensional data. For instance, PASE [30] , built as an extension to Post-

greSQL, adopts the default cost estimate without filling the support function field. In

this chapter, we empirically evaluate our abstraction by comparing cost and actual exe-

cution time in 5.2 and examining PostgreSQL’s performance under our cost estimation

in an end-to-end manner in 5.3. The latency introduced by our cost model is <1ms in

all test cases, which is acceptable in all scenarios.

5.1 Experiment Setup

SIFT1M [45] is selected for its popularity among vector search benchmarks

and sufficiency for cost model evaluation. All evaluations are conducted on an

Azure VM, Standard_F64s_v2 [57] (the same as VBase [17] ), with 64 v-CPUs and 128

GiB memory running Linux Ubuntu 20.04 LTS.

5.2 Cardinality Estimation

For the mixed query, PostgreSQL calculates the cardinality of the scalar and vector

filters individually and then merges the estimations. Thus, we only need to test the

accuracy of cardinality estimation for the range filter solely. The sample set and test

queries are generated using uniform sampling, and cardinality estimation is performed

by executing the query on the sample set and collecting the number of results.

SELECT ∗

FROM s i f t 1 m

WHERE embedding <∗> q < r ;

Listing 5.1 Range query for CE evaluation

The accuracy of sampling is measured by Q-Error [58] .
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Figure 5.1 The box plot for Q-Error of selectivity estimation via basic sam-
pling.

𝑄err = max (
Selreal
Selesti

, Selesti
Selreal )

(5.1)

We set the sample rate to 0.001 to accommodate online service scenarios, resulting

in latencies of <1ms for 330k data in VBase [17] ’s tests. Since the selectivity of range

filters cannot be accurately controlled by the radius 𝑟 of a hypersphere, different queries

are split into buckets based on their actual selectivity.

5.3 Cost Model

Due to time constraints, we did not conduct a cost model evaluation on SIFT1M.

Instead, we used the estimation data from VBase, which was also produced by a model

with the same design. The cost model was tested on the Recipe table described below.

Rec ipe ( r e c i p e _ i d BIGINT SERIAL ,

images_embedding FLOAT8 [ ] ,

p o p u l a r i t y FLOAT8)

In the table Recipe, the popularity column contains uniformly distributed random

data. The cost model test is performed on two identical copies of the Recipe table.

One copy has only a B-Tree index on the popularity column, while the other has an

HNSW index [25] on the images_embedding column. Sequence table scans and parallel
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Figure 5.2 Comparing estimated cost and actual execution time, they fit well
into a homogeneous line. This shows the cost model reflects end-to-end HNSW
index scan cost well. The estimation value is relative to pre-defined constant in
PostgreSQL.

table scans are disabled, and since seq_page_cost is set to equal random_page_cost

(otherwise, Bitmap scans would be preferred for their better cache locality), PostgreSQL

executes index scans on B-Tree and HNSW independently. The costs of pure B-Tree and

HNSW index scans are collected in this setup. Cost estimation and execution time for

each plan are collected using the EXPLAIN ANALYZE keyword in PostgreSQL.

SELECT r e c i p e _ i d

FROM Rec ipe

WHERE d i s t a n c e ( q , images_embedding ) < r

AND p o p u l a r i t y < p ;

In PASE [30] , the cost model is referred to as default since it does not implement a

custom cost model. Instead, PostgreSQL reverts to the default estimation in this case,

performing a B-Tree scan on the popularity column. Scanning the B-Tree first and

applying a range filter on iteratively produced results is denoted as B-Tree(default),

whereas scanning HNSW first and applying a scalar filter on results is labeled HNSW.

The plan chosen by PostgreSQL (from the plans above) based on the cost model is

marked as My Plan, and the optimal policy that consistently selects the faster scanning

plan is labeled as Best Plan.

In 5.3, each point represents the average execution time of queries within the cor-

20



中国科学技术大学本科毕业论文

Figure 5.3 PostgreSQL’s execution time with different planning. Because vec-
tor index is slower compared to scalar one with same selectivity, selectivity of
range filter and scalar filter is set to 0.13 and 0.9 respectively to center the pivot
in both graphs.

responding selectivity bucket. The best plan is computed afterward, as the faster option

between the B-Tree and HNSW scans. Our plan is calculated during the query-planning

stage (before execution) and selects the plan with the lower estimated cost. As seen in

the figure, our planning approach under the abstraction is near-optimal. For queries near

the intersection point and grouped into the same bucket, some may perform better under

HNSW scan, while others perform better under B-Tree scan. Consequently, adhering

to the same plan cannot always represent the best strategy for all queries in this bucket.

Therefore, the optimal plan and our near-optimal planning might result in lower latency

than the two basic scanning plans.
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Chapter 6 Related Work

In this section, we provide an overview of related techniques in ANNS, DBMS cost

models, and cost estimation of ANNS.

（1）High-dimensional indices

Quite a few high-dimensional indices have emerged over the years. They can be

roughly categorized into three groups:

Tree Index: This group includes R-Tree [27] , RD-Tree [40] , TV-Tree [59] , KD-

Tree [24] [60] , BKD-Tree [61] , BP-Tree [62] , APD-Tree [44] , and more. These indices focus

on dividing the high-dimensional metric space in a tree-like manner to narrow down the

search range. Tree-based indices have clear navigation and traversal phases and can be

effectively represented using our cost abstraction.

Graph Index: This group consists of NSW [46] , HNSW [25] , and others. They

exploit the potential of the small-world effect [63-64] and the Voronoi graph [65] along

with its dual Delaunay triangulation form, performing a greedy search over the graph to

narrow down search subspace. As our evaluation shows, the graph-based index can be

modeled using this abstraction.

Locality-Sensitive Hashing [66] typically maps high-dimensional data to lower-

dimensional representations. Key methods [38,67] encompass Hamming-based LSH [68] ,

Minkowski-based LSH [69] , Angular-based LSH [70] techniques, Jaccard-based LSH [71] ,

and more. In general, they are faster than tree and graph-based indices but have lower

recall. The underlying structure of LSH techniques varies [38] from tree, graph, to se-

quence. As a result, their cost models should be customized on a case-by-case basis,

although they can maintain a consistent abstraction.

（2）ANNS in relational databases

Recent research has centered on integrating high-dimensional indices into

traditional relational DBMSs, including Elasticsearch [31] , Jingdong Vearch [72] ,

AnalyticDB-V [15] , PASE [30] , Milvus [16] , and VBase [17] . AnalyticDB-V and PASE

utilize PostgreSQL as a backend but do not provide proper query planning; Elastic sup-

ports vector search along with scalar filters; Milvus implements an efficient workaround

for mixed queries but continues to treat the vector index as a black box; VBase presents
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an iterative model for vector index and the cost model proposed in this paper.

Recent work focuses on integrating high-dimensional indices into traditional re-

lational DBMS, including Elasticsearch [31] , Jingdong Vearch [72] , AnalyticDB-V [15] ,

PASE [30] , Milvus [16] , VBase [17] . AnalyticDB-V and PASE take PostgreSQL as back-

end but did not provide proper query planning; Elastic began to support vector search

plus scalar filter; Milvus efficiently employed workaround for mixed query, but still

treated the vector index as a black-box; VBase implement an iterative model for vector

index and cost model proposed in this paper.

（3）Cost Models

There is extensive research on cost modeling [73-74] for relational databases. Ear-

lier studies on high-dimensional indices [21-22] focused on accurately estimating range

query cardinality for prevalent indices at the time, such as X-Tree [75] and R-Tree [27] .

Achieving this required precise estimation of hypersphere intersection between search

subspace and hypersphere around query point, which in turn enabled the prediction of

the number of page fetches. However, high-dimensional indices in relational databases

were no longer a popular research topic until the recent advances in machine learning

and neural networks. Over the past decade, the bottleneck in vector search has shifted

from I/O to computation (CPU/GPU) due to the rapid growth of fast storage devices [34] ,

necessitating adaptations in cost models.

（4）Cardinality Estimation of ANNS

Cardinality estimation for high-dimensional queries has recently gained atten-

tion [10] , but it remains an unsolved problem. Previous work can be broadly categorized

into three groups: 1. Sampling-based methods [51,76] focus on enhancing sampling per-

formance by partitioning the search space using LSH or tree-like indices. 2. Kernel

density estimation methods [77-78] apply kernels to one-dimensional distance functions

among metric objects. 3. Deep methods [79-81] leverage machine learning and deep

models, including XGBoost [82] , LightGBM [83] , and deep lattice networks [84] , among

others. Estimated cardinality from these models can be applied as the input of our cost

abstraction for a better performance over sampling baseline.
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Chapter 7 Conclusion

This paper identified a shared search pattern among high-dimensional indices and

proposed a two-level unified cost abstraction. This abstraction has been implemented as

an actual cost model in PostgreSQL, with its correctness and accuracy validated through

end-to-end testing. Utilizing this cost model, current high-dimensional databases can

achieve significant performance improvements with near-optimal planning. In addition

to enhancing query execution in DBMS, this cost abstraction offers guidance for future

optimization in ANNS-integrated databases.

However, this paper only implement cost models under the abstraction for two pop-

ular indices: IVFFlat and HNSW. Future work can expand the application of this ab-

straction for more indices.
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